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SCREENING SMOKE PERFORMANCE
OF COMMERCIALLY AVAILABLE POWDERS

if. VISIBLE SCREENING BY TITANIUM DIOXIDE

INTRODUCTION

Titanium dioxide (titania, Tioz) is a materiai that has been carefully
engineered both chemically and physically to be very efficient at scattering light
so that when incorporated into a paint for example, a minimum number of coats
will hide a substrate. For a unique application such as military visible
obscuration, control over the physical and chemical properties of the pigment is
also of great importance. Historically manufacturers have maximized the
extinction coefficient (a), electromagnetic extinction cross section per mass of
material, for the pigment industry by adjusting pigment particle diameter until
maximum substrate hiding power was achieved resulting in an optimum
diameter approximately equal to 0.25 microns for the rutile form of Ti02 having

a refractive index of 2.73. The anatase form of TiO, has a slightly lower

refractive index (2.55) and therefore a slightly larger optimized diameter and a
slightly lower extinction cross section per volume.

Titania is an efficient scatterer of light compared to other materials
because of its relatively large refractive index. Because maximum achievable
electromagnetic cross section per volume of scattering material, extinction
coeflicient multiplied by density (a*p), is roughly inversely proportional to
optimum diameter, and since optimum diameter decreases with increasing
refractive index, we find that titanium dioxide pigment has a volume limited
figure of merit ® . =a*Y *p superior to other lower refractive index white
pigments such as antimony oxide with a refractive index in the range 2.09-2.29
and zinc oxide with a refractive index of 2.02. The performance parameters «,
yield ¥ and density p along with the weight &, volume ®, and financial &,
limited figures of merit for numerous grades of commercially available titania
are listed in Table 1. Performance parameters and figures of merit (FOM), as
described in the first report in this series that surveyed sources of graphite flake
powder for infrared screening, allow for complete performance characterization
and comparison among obscurant materials!.

Titania has a volume limited figure of merit (&, =a*Y *p) about three
times greater than fog oil and comparable to white phosphorus (WP). White
phosphorus has a low humidity yield factor Y = 3, abou three times greater than
that achievable by any powder such as titania because WP reacts with the air
adding aerosol mass by condensing water vapor and consuming oxygen. On
the other hand titania has a value for a *p that is aimost three times that of WP
or fog oil. Figure 1 shows photopic average electromagnetic cross section per
volume «a*p as a function of mass median diameter for log normal
polydispersions with geometric standard deviations of 1.4. Each curve
corresponds to a different refractive index N. The lcwest broadest curve peaks
at the largest mass median diameter of about 3/4 micron and corresponds to a
refractive index of 1.4 typical of fog oil and WP, while the middle curve
corresponds to a refractive index of 2.0 and the curve with the highest and most
narrow peak reaching its peak value at the smallest mass median diameter,
about 1/5 micron, corresponds to a refractive index of 3. The extinction
coefficient was computed by averaging over both aerosol size distribution and
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over visible wavelengths using the photopic response of the eye as a weighting
function.

The goal of smoke screening material development is to maximize the
product of smoke plume optical depth multiplied by operational lifetime
(duration) for a given volume of material transported. When transportation is
volume limited, optical depth multiplied by duration is proportiona! to a*Y*p
multiplied by the fraction of initial aerosol mass remaining airborne downwind

- . ,
(aYpe  °) where the coefficient * y* depends on Pasquill category, windspeed
and distance downwind!. Thus the optical depth multiplied by the duration can

- . -w : .
be maximized by maximizing a¥Ype 2, a figure of merit based on the three

performance parameters alpha a, yield Y and deposition velocity v, that can be
easily measured in an aerosol chamber, but not in the fieild. The density
referred to above is that of the packed powder being transported. Its upper limit
is the intrinsic particle density and because of variability in packing processes
that densify powders we use this upper limit as the fourth performance
parameter appearing in Table 1. When transport is weight limited, optical depth

multiplied by duration is proportional to a second figure of merit aYe ”D. Close
to the source these figures of merit to be maximized become simply aYp and
aY for volume and weight limited transport respectively. In other words we
want to maximize the square meters of screening cross section per volume of
transported aerosolized material when volume limited or square meters of
screening per mass of transported aerosolized material when weight limited.
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Figure 1:2 Photopic average eleciromagnetic cross section per volume a*p as a function of

mass median diameter for log normal polydispersions with a geometric standard deviation of 1 4.




AEROSOL DEPOSITION

The rate of which aerosol panticles are removed from the air and
deposited onto the terrain depends upon four mechanisms: gravitational
settling, impaction, Brownian ditfusion and turbulent diffusion (this can also lead
to reaerosolization). The dominant mechanism for submicron particles is
Brownian diffusion while the dominant mechanism for large particles over 10
microns aerodynamic diameter is gravitational settling. The net effect of
deposition can be studied in the ERDEC smoke chamber (Figure 2) by stirring
the aerosol not only to maintain uniform aerosol concentration, but also to
create a level of air turbulence that will produce an asrosol deposition velocity
representative of what could be expected in the field under typical
meteorological and terrain conditions. The stirred settling model for a
rectangular chamber of height H, floor area A and volume V = AH, requires
that concentration C be maintained uniform throughout so that we can relate an
aerosol deposition velocity v, to a rate of change dm/dr of total aerosol mass
m contained in the chamber as a function of time ¢

dm

7 = —\'DAC
'
Expressing total aerosol mass m = CV in terms of concentration this becomes
V
dicy) =—v,AC
dr
The aerosol test chamber volume is constant so we write
dC _ -v,A dt
— = dt = -v,—
C 1%
which has the solution
-vp!
C=Cee H

If deposition is dominated by gravitational settling we can approximate
deposition velocity using the Stokes settling velocity. Deposition velocities of
the various titania materials have been measured in the smoke chamber with
an average value of roughly 0.03 cm/sec. There are a wide range of values for
the deposition velocity depending upon the material tested but this is probably
in part due to the relatively small differences in aerosol concentrations
rneasured on sequential fiter samples leading to small computed deposition
velocities and large percentage errors.

Variability in measured deposition velocity is the result of errors in
several measured quantities which are then used to compute deposition
velocity. We compute deposition velocity v, using the stirred settling model and
two filter sample concentration measurements, ¢,, and c¢,, of one minute
duration commencing at times ty and t2

Thus measurement errors in chamber height 8H, time &t and concentration d¢
result in the following root mean square (rms) error in deposition velocity




v av av dv av
< >= (=L D (=L Yo Vo 2
dv, \/( H SHY + (3'1 8t)) 4»((3"2 8, (Jc‘ 8¢, +( v, oc,)
When comparing values of (dvp) based on measurements in the ERDEC 14
cubic meter smoke chamber we can drop the first error term since chamber
height has been measured just once and that value is used in all computations
of deposition velocity. The error terms involving concentration must be farther
broken down since concentration is actually computed as a function of a time

duration measurement T, air volumetric flow rate measurement V using a
rotometer and two mass measurements, filter tare my and filter plus aerosol
material mr.
m-m

Vt

c=

and

(8c) = —6 7y + (-—av> (F sm ) +( 2 5, y
am, am,
Solving for the patrtial d@nvatwes
IV _ W

ar -1

dc ¢

om m;-m,

The rms error in deposition velocity when §t=8t1=0t2=81 and when
dm=0dm=0mt becomes

<6v,,>=\[2v,3< o Y +2( il >[(§>’+(§V—)’+2( om )]

t, -1, -t m.—m

The chamber height is 200cm, the time interval between start times for
sequential filter samples is t2-t1=150s, the duration of each filter sample is
1=60s, the time measurement error is 8t=0.5s, the 20 lpm flow rate error is
5v =0.02, the aerosol mass deposited on the filter at a typical concentration ot

0.2g/m3 is mt-my=0.044g, the weighting error is 3.00002g and a deposition




velocity typical of TiO2is v, =0.03cm/s. The expected rms error in deposition
velocity is therefore

0.5 200 ,, 0.5 0.00002
Sv =J20.0S’—’+2—’-—’+ .02)2 42
(6vy) ( )(150) (150)1(60) (0.02) (0.004
=/5.6X10™ +3.6(6.9X10™ + 4X10™ + 5X107°)
So the first term, the one dependent upon the deposition velocity is small

compared to the remaining three error terms which combine to give a rms error
of

)

(8v,) =0.043cm / sec

which is comparable to measured deposition velocities for TiO2. This explains
the large observed variability in the tabulated deposition velocities measured in
the chamber. It should be mentioned that the deposition velocity is intluenced
by the level of turbulence generated by the mixing fan. Variability in mixing fan
speed has not been addressed in the above error analysis.

To determine whether Brownian diffusion is the dominant deposition
mechanism, first we ignore the flux deposited onto the chamber walls and
ceiling because deposition is observed to be negligible and must therefore be
balanced by reaerosolization. The flux of particles deposited onto the floor due
to Brownian diffusion J (particles/cmZ2sec) alone may be written3

Je DC,
A
where C, is the chamber aerosol number concentration, A is the laminar

flow boundary layer thickness where Brownian diffusive transport becomes
more important than turbulant diffusion transport and D is the Brownian
diffusion coefficient. We can then write

D= BXT =

C
3nxnd
where B is the particle mobility, x is Boltzmann's constant, T is temperature, n
is air viscosity, d is particle diameter and C. is the Cunningham slip correction

factor to be defined later. The number flux per unit area per nit time J may be
written in terms of aerosol deposition velocity

xT

J=v,C,
thus
A

Since we measure v, and can calculate D, we estimate the laminar boundary
layer thickness for our level of turbulance
A= D _ CkT
v, 3rndv,
Plugging in some numbers for titania where d = 0.25um and C. =1.74 is derived
later

_ (1.74)(1.38X107")(293)
(3m)(1.83X107)(0.25X107*)(0.03)

=5X10°cm




This value is equal to that mentioned earlier by Fuchs3 for half micron diameter
panticles and it appears that Brownian diffusion is not the dominant deposition
mechanism, but is accompanied by gravitational sedimentation and turbulent
ditfusion which reduces A below the thickness of the laminar sublayer.5 Inertial
impaction driven by turbulent diffusion that brings the particles within a stop
distance and gravitational settling will reduce the computed boundary layer
thickness to artificially small values for particle diameters greater than a few
hundredths of a micron.

AEROSOL COAGULATION

Primary particles of titanium dioxide are roughly isometric spherical
particles with a volume equivalent diameter around 1/4 um and a geometric
cross section equivalent diameter around 0.31 um as found with computed

spectra that matches the measurement. At mass concentrations C_ = 0.1 g/m3.

we have number concentrations of titanium dioxide particles having density
p =4g/cm3 and diameter 4 =0.25 microns

3 ) 3
CN(,:Q)z_Q_= (0.1g/ m*)(10°m* / cm®)

= = =3X10°/ cm’
pg—d’ (4g/cnﬁ)(g)(o.zsxw*cm)’

The Cunningham slip correctior: factor for these particles is4
-1.1d

C, =1+2—d’1—[1.257+0.40e7]

where A =0.07um is the mean free path of air molecules at standard
temperature and pressure. For 4=0.25um we have C.=174 and the

coagulation coefficient4

_8aT

37
where n is the viscosity of air, T the temperature and x the Boltzman constant,
becomes
K < 8(1:38X107°)(293)
3 1.38X10~
The number concentration C,(¢) as a function of time is found to be4

Cy(t=0)
1+CN(1=())’—(2£

by solving the monodisperse aerosol coagulation equation assuming constant
coagulation coefficient. The time required to reduce the concentration to half it's
initial value as a result of coagulation is

2 2

1,, = =
O Cur=0K  (3X10%/ cm*)(1.03X107 cm’ / sec)
Concentrations are higher near the dissemination source and concentrations

during testing are often three times this value thereby reducing the coagulation
half life. As a result coagulation does occur during the several minutes of

(1.74)=1.03X10°cm? / sec

Cy(1)=

= 670sec
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chamber testing and can be observed in aerosol samples studied under the
electron microscope. Linear and dendritic chains of primary particles form;
some with many branches.

DECREASED YIELD DUE TO ELECTROSTATIC DISPERSION

Unlike graphite powders which experience increases in dissemination
yield when dried in an oven, titanium dioxide powders experience a significant
reduction in dissemination yield. This is probably the result of triboelectric
monopolar charging of the particles as they pass through and collide with the
walls of the aluminum feed tube of the dissemination nozzle which is grounded.
The charging effect could be virtually eliminated by either breaking the ground
or by coating the inside walls of the feed tube with the same material
constituting the aerosol. The magnitude of the charge effect on aerosol
concentration and yield can be estimated from the expression for the
concentration decay of a uniform cloud of identically charged aerosol particless

Co(t) = Cu(t=0)
T ArC L+ 1
where C,(t) is the aerosol number concentration at time t, Cq is the initial

charge per unit volume of aerosol laden air and { is the electrical mobility of the
particle. The electrical mobility, defined as the particle velocity divided by the
electric field strength E producing that velocity, { =v/ E, is found by writing the
electric force acting on a particle having n elementary charges
Fe=nqE

and equating it with the drag force acting on the particle

F, =3andC,
where 1 is the viscosity of air, d the particle diameter and C¢ the Cunningham
correction factor. Solving for the velocity and rewriting the expression for
mobility
ne

¢= 3nndC,
and writing the initial charge concentration in terms of the aerosol particle
number concentration and the number of charges per particle

Cq=Cyne
we then substitute these expressions for C, and { into the expressions
describing the decrease in aerosol concentration as the monopolar uniformly

charged cloud expands into free space or is intercepted by boundaries such as
chamber walls and floor

C,(t=0)
4C, (1 =0)n’e’t
3ndC,
The time required to reduce the number concentration by half due to monopolar

charged cloud exparsion is

Cy(t)=

+1

_ 37](/C(-
% - 4C (1 =0)n'e’

7




Aeroso! concentration is measured and averaged over the period ot one minute
commencing immediately after aerosol dissemination to obtain dissemination
yield of the powder. We roughly estimate the concentration halt life due to
charged cloud expansion at half a minute since subsequent concentration
decay, as indicated by the second and third filter samples, appears to be that
expected due to a combination of gravitational settling plus inertial impaction
driven by turbulence. We use the initial number concentration of 3X106 and
solve for ne, the charge on each particie in esu using the cgs system,

3ndC
ne = |—————r0
4C,(t =0,

M_\[3(1.83)(10“‘)(0.25)(10*)(1.74)

=8X10"esu

4(3.0X10°)30

The fundamental unit of charge is e=4.8X107'0 esu. We solve for the average
number of fundamental charges per particle and obtain

8X10 % esu

n = —————— =16.7charges/ particle
4.8X10%esu -

The number is not terribly sensitive to the half life we have estimated;
proportional to the inverse square root. Had we choosen a half lite of 3 seconds
instead of 30 seconds the number would become 52.8 charges/particle. We
can estimate the current flowing through the inner feed tube of the
dissemination nozzle by noting that e=1.6X10-18 coulombs in the mks system of
nomenclature. Assuming that the material is disseminated into the chamber
volume V during the time t,, we can expect a total aerosol charge Q results in a
current | equal to

_ _Q_ VC,.(t =0)ne
Ip Ip
;- 143x10” )(16.7)(1.6X10™"?)
10
a quantity that can be measured.

It should be emphasized that some of these computations involve
simplifying assumptions that guarantee no better than perhaps order of
magnitude accuracy. Nevertheless the calculations are essential not only to
understand dominant eftects and phenomena but are invaluable in guiding

experimentation by providing an understanding of how measured quantities
depend on independent variables.

/

= 11.2pamps

TITANIUM DIOXIDE MANUFACTURING

Currently titania (both rutile and anatase crystal forms) is the most
important commercially produced white pigment throughout the world, with
rutile grades being produced in greatest volume. The pigment is extensively
used because it efficiently scatters visible light thereby giving whiteness,
brightness and opacity when incorporated into a paint, plastic or paper product.

8




There are two manufacturing processes used for production of titanium dioxide
known as the sulfate and chloride processes. The older sulfate process,
originally only producing anatase grades but later developed to produce rutile
grades, typically involves the reaction of titanium bearing ore with sulfuric acid
at elevated temperatures to produce a solution of titanium, iron and other metal
sulfates. The sulfate solution undergoes a number of processes to allow for
extraction of the purified titanyl sulfate, which then proceeds through a series of
steps including hydrolysis, precipitation, washing and calcination to produce
pigmentary titania. The desired anatase or rutile crystal structure and size is
controlled by nucleation and calcination of the pigment. The more modern
chloride process (commercialized by Du Pont to produce rutile titania) involves
the formation of titanium tetrachloride from high purity titanium bearing ore
reacting with chlorine gas in the presence of coke. The tetrachloride i< then
further purified by distillation and then oxidized at high temperature the
vapor phase to produce crystalline titanium dioxide. Crystal type anc cle
size distribution can be controlled by the oxidation step. Both crystalline iorms
of the oxide, regardliess of the manufacturing route, routinely have surface
treatments applied to the base pigment. Typically a hydrous oxide of alumina,
silica or zirconia is applied to the surface to improve anti-yellowing,
dispersibility and durability. Individual oxide treatment or various mixed
combinations can be used to taylor surface acidity and/or charge in an effort t~
optimize performance depending on the specific application. Some grades ot
titania are further treated after the oxide coating with organics such as polyols,
amines and siloxanes. These coatings can be used to obtain
hydrophobic/hydrophilic behavior at the surface of the base pigment and aiso
impart improved powder flow/dispersion properties.6

ERDEC SMOKE CHAMBER

The 14 cubic meter smoke chamber used to measure the performance
parameters such as the electromagnetic extinction cross section per mass of
aerosol (a), yield (Y) and deposition velocity (vp) is shown in Figure 2 with the
full smoke characterization instrument configuration. Glass fiber filters, a
rotometer and vacuum pump are used to measure aerosol concentration at a
flow rate of 20 liters per minute. A photodiode array spectrometer measures
aerosol transmittance over the wavelength range of 0.4u-1.0u. Two FTIR
spectrometers measure aerosol transmittance over the spectral regions 0.9 -
3u and 2.5u-22u. At reduced concentrations a quartz crystal microbalance
(QCM) and an aerodynamic particle sizer (APS) measure aerodynamic particle
size distribution. The Stanford Research Institute sonic pneumatic nozzle is
operated at 60 psi to disperse and deaggregate powders to produce an aerosol
of primary particles.” A mixing fan is operated continuously in the chamber at a
low speed to maintain uniform concentration and provide a level of turbulence
driving reaerosolization and impaction approximating those components of
aerosol deposition in the battlefield. The aerosol sedimentation component of
deposition will of course be independent of whether the aerosol is in a chamber
or on the battlefield. All titanium dioxide samples tested were previously oven
dried and cooled in a desiccator prior to aerosol dissemination.

9
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CONCLUSION

The theory of designing a scattering aerosol using a high refractive index
material was explained. The concept of describing competing titanium dioxide
smoke materials in terms of four measurable performance parameters
(extinction coefficient, dissemination yield, deposition velocity and powder
packing density) has been presented. Three figures of merit based on these
four performance parameters have been introduced. All three are proportional
to smoke plume optical depth downwind and can be used not only to rank
performance, but also quantitatively to predict cloud opacities downwind or
screening areas. The first figure of merit gives the square meters of smoke
screening per mass of smoke material transported and is useful in weight
limited applications such as the large area smoke generators. The second
figure of merit gives the square meters of screening per volume of smoke
material transported and is usefull in volume limited applications such as
grenades, rockets, artillery rounds, mortars and smoke pots. The third figure of
merit gives the square meters of screening per dollar of smoke material cost
and is usefull in situations such as training with large area smoke screening.
Here for example the weight constraint of the large area smoke generator
vehicle would have to be met first by specifying a minimum value for the first
figure of merit (weight limited) and then comparing all materials satisfying this
constraint based on the third figure of merit (financial limited).

Titanium dioxide manufacturing processes were described and a wide
variety of commercially available titanium dioxide powders have been tested in
the ERDEC smoke chamber using an SRI sonic pneumatic nozzle at a pressure
of 60 psi for dissemination. Performance parameters and their product derived
figures of merit are tabulated in Table 1 so that materials can be compared over
the visible, 1.06u, 3-5u and 8-14u spectral regions. Error analysis of the
deposition velocity measurement was presented to explain the large variance.
A comparison with deposition rate dominated by Brownian diffusion indicated
that gravitational settling and turbulent diffusion/impaction mechanisms are not
negligible. Coagulation halflives were computed to demonstrate that significant
levels of coagulation occur during chamber testing. Triboelectric charging and
electrostatic dispersion of a monopolar charged cloud were discussed to
explain the relatively low dissemination yields especially after oven drying.

11
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